Solve the Equation : 4x ^ 2 – 5x – 12 = 0

4x ^ 2 – 5x – 12 = 0

To solve the equation 4x^2 – 5x – 12 = 0, you can use the quadratic formula:

x = (-b ± sqrt(b^2 – 4ac)) / 2a

where a, b, and c are coefficients of the equation in the form ax^2 + bx + c.

Substituting the values from the given equation, we get:

x = (-(-5) ± sqrt((-5)^2 – 4(4)(-12))) / 2(4)

Simplifying this expression, we get:

x = (5 ± sqrt(25 + 192)) / 8

x = (5 ± sqrt(217)) / 8

Therefore, the two solutions to the equation 4x^2 – 5x – 12 = 0 are:

x = (5 + sqrt(217)) / 8 ≈ 2.346

x = (5 – sqrt(217)) / 8 ≈ -1.281

So, the values of x that satisfy the equation are approximately 2.346 and -1.281.

More from author

Latest posts

If a Specific Economy Has Extra Capital Resources Available, It Will

a. Be able to produce top-quality goods and services. b. Be able to produce more goods and services needed and wanted by society. c. Continually look...

The age of majority in international research is determined by the?

The age of majority, which is the age at which an individual is legally considered an adult and has the rights and responsibilities that...

On a Production Possibility Curve, Data Points That Fall Outside of the Curve Represent

a) an inefficient allocation of resources. b) a balanced allocation of resources. c) ideal production. d) a currently unattainable production Answer: On a production possibility...
[tdn_block_newsletter_subscribe title_text="Want to stay up to date with the latest news? " description="V2UlMjB3b3VsZCUyMGxvdmUlMjB0byUyMGhlYXIlMjBmcm9tJTIweW91ISUyMFBsZWFzZSUyMGZpbGwlMjBpbiUyMHlvdXIlMjBkZXRhaWxzJTIwYW5kJTIwd2UlMjB3aWxsJTIwc3RheSUyMGluJTIwdG91Y2guJTIwSXQncyUyMHRoYXQlMjBzaW1wbGUh" input_placeholder="Email address" btn_text="Subscribe" tds_newsletter2-image="8" tds_newsletter2-image_bg_color="#c3ecff" tds_newsletter3-input_bar_display="row" tds_newsletter4-image="9" tds_newsletter4-image_bg_color="#fffbcf" tds_newsletter4-btn_bg_color="#f3b700" tds_newsletter4-check_accent="#f3b700" tds_newsletter5-tdicon="tdc-font-fa tdc-font-fa-envelope-o" tds_newsletter5-btn_bg_color="#000000" tds_newsletter5-btn_bg_color_hover="#4db2ec" tds_newsletter5-check_accent="#000000" tds_newsletter6-input_bar_display="row" tds_newsletter6-btn_bg_color="#da1414" tds_newsletter6-check_accent="#da1414" tds_newsletter7-image="10" tds_newsletter7-btn_bg_color="#1c69ad" tds_newsletter7-check_accent="#1c69ad" tds_newsletter7-f_title_font_size="20" tds_newsletter7-f_title_font_line_height="28px" tds_newsletter8-input_bar_display="row" tds_newsletter8-btn_bg_color="#00649e" tds_newsletter8-btn_bg_color_hover="#21709e" tds_newsletter8-check_accent="#00649e" embedded_form_code="JTNDIS0tJTIwQmVnaW4lMjBNYWlsQ2hpbXAlMjBTaWdudXAlMjBGb3JtJTIwLS0lM0UlMEElMEElM0Nmb3JtJTIwYWN0aW9uJTNEJTIyaHR0cHMlM0ElMkYlMkZ0YWdkaXYudXMxNi5saXN0LW1hbmFnZS5jb20lMkZzdWJzY3JpYmUlMkZwb3N0JTNGdSUzRDZlYmQzMWU5NGNjYzVhZGRkYmZhZGFhNTUlMjZhbXAlM0JpZCUzRGVkODQwMzZmNGMlMjIlMjBtZXRob2QlM0QlMjJwb3N0JTIyJTIwaWQlM0QlMjJtYy1lbWJlZGRlZC1zdWJzY3JpYmUtZm9ybSUyMiUyMG5hbWUlM0QlMjJtYy1lbWJlZGRlZC1zdWJzY3JpYmUtZm9ybSUyMiUyMGNsYXNzJTNEJTIydmFsaWRhdGUlMjIlMjB0YXJnZXQlM0QlMjJfYmxhbmslMjIlMjBub3ZhbGlkYXRlJTNFJTNDJTJGZm9ybSUzRSUwQSUwQSUzQyEtLUVuZCUyMG1jX2VtYmVkX3NpZ251cC0tJTNF" tds_newsletter="tds_newsletter1" tds_newsletter1-input_bar_display="" tds_newsletter1-input_border_size="0" tds_newsletter1-title_color="#172842" tds_newsletter1-description_color="#90a0af" tds_newsletter1-disclaimer_color="#90a0af" tds_newsletter1-disclaimer2_color="#90a0af" tds_newsletter1-input_text_color="#90a0af" tds_newsletter1-input_placeholder_color="#bcccd6" tds_newsletter1-input_bg_color="#ffffff" tds_newsletter1-input_border_color="rgba(255,255,255,0)" tds_newsletter1-input_border_color_active="rgba(255,255,255,0)" tds_newsletter1-f_title_font_family="394" tds_newsletter1-f_title_font_size="eyJhbGwiOiI0MiIsImxhbmRzY2FwZSI6IjM2IiwicG9ydHJhaXQiOiIzMCIsInBob25lIjoiMzAifQ==" tds_newsletter1-f_title_font_line_height="1.2" tds_newsletter1-f_title_font_spacing="-1" tds_newsletter1-f_descr_font_family="638" tds_newsletter1-f_descr_font_size="eyJhbGwiOiIxOCIsImxhbmRzY2FwZSI6IjE1IiwicG9ydHJhaXQiOiIxNCIsInBob25lIjoiMTQifQ==" tds_newsletter1-f_descr_font_line_height="1.6" tds_newsletter1-f_descr_font_weight="700" content_align_horizontal="content-horiz-center" tdc_css="eyJhbGwiOnsibWFyZ2luLXJpZ2h0IjoiYXV0byIsIm1hcmdpbi1ib3R0b20iOiIxMDAiLCJtYXJnaW4tbGVmdCI6ImF1dG8iLCJwYWRkaW5nLXRvcCI6IjkwIiwid2lkdGgiOiI0MCUiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0Ijp7Im1hcmdpbi1ib3R0b20iOiI3MCIsInBhZGRpbmctdG9wIjoiNjAiLCJ3aWR0aCI6IjcwJSIsImRpc3BsYXkiOiIifSwicG9ydHJhaXRfbWF4X3dpZHRoIjoxMDE4LCJwb3J0cmFpdF9taW5fd2lkdGgiOjc2OCwicGhvbmUiOnsibWFyZ2luLWJvdHRvbSI6IjcwIiwicGFkZGluZy10b3AiOiI2MCIsIndpZHRoIjoiMTAwJSIsImRpc3BsYXkiOiIifSwicGhvbmVfbWF4X3dpZHRoIjo3NjcsImxhbmRzY2FwZSI6eyJtYXJnaW4tYm90dG9tIjoiOTAiLCJwYWRkaW5nLXRvcCI6IjgwIiwid2lkdGgiOiI2NSUiLCJkaXNwbGF5IjoiIn0sImxhbmRzY2FwZV9tYXhfd2lkdGgiOjExNDAsImxhbmRzY2FwZV9taW5fd2lkdGgiOjEwMTl9" tds_newsletter1-f_disclaimer_font_family="394" tds_newsletter1-f_disclaimer2_font_family="394" tds_newsletter1-f_input_font_family="394" tds_newsletter1-f_input_font_line_height="3" tds_newsletter1-f_input_font_size="eyJhbGwiOiIxNiIsInBvcnRyYWl0IjoiMTQiLCJwaG9uZSI6IjE0In0=" tds_newsletter1-f_btn_font_family="394" tds_newsletter1-f_btn_font_transform="uppercase" tds_newsletter1-f_btn_font_weight="700" tds_newsletter1-btn_bg_color="#e2687e" tds_newsletter1-btn_bg_color_hover="#172842" tds_newsletter1-f_input_font_weight="" tds_newsletter1-f_title_font_weight="800"]