4x ^ 2 – 5x – 12 = 0

To solve the quadratic equation 4X^2 – 5X – 12 = 0, you can use the quadratic formula:

X = (-B ± √(B² – 4AC)) / (2A)

In this equation, A = 4, B = -5, and C = -12.

  1. First, plug these values into the quadratic formula:

X = (-(-5) ± √((-5)² – 4(4)(-12))) / (2(4))

  1. Simplify the equation:

X = (5 ± √(25 + 192)) / 8

  1. Calculate the values under the square root:

X = (5 ± √217) / 8

  1. Now, you have two solutions, one with a plus sign and one with a minus sign:

X₁ = (5 + √217) / 8 = 2.696

X₂ = (5 – √217) / 8 = -1.696

So, the solutions to the quadratic equation 4X^2 – 5X – 12 = 0 are:

X₁ ≈ 2.696

X₂ ≈ -1.696

More from author

Latest posts

If a Specific Economy Has Extra Capital Resources Available, It Will

a. Be able to produce top-quality goods and services. b. Be able to produce more goods and services needed and wanted by society. c. Continually look...

The age of majority in international research is determined by the?

The age of majority, which is the age at which an individual is legally considered an adult and has the rights and responsibilities that...

On a Production Possibility Curve, Data Points That Fall Outside of the Curve Represent

a) an inefficient allocation of resources. b) a balanced allocation of resources. c) ideal production. d) a currently unattainable production Answer: On a production possibility...
[tdn_block_newsletter_subscribe title_text="Want to stay up to date with the latest news? " description="V2UlMjB3b3VsZCUyMGxvdmUlMjB0byUyMGhlYXIlMjBmcm9tJTIweW91ISUyMFBsZWFzZSUyMGZpbGwlMjBpbiUyMHlvdXIlMjBkZXRhaWxzJTIwYW5kJTIwd2UlMjB3aWxsJTIwc3RheSUyMGluJTIwdG91Y2guJTIwSXQncyUyMHRoYXQlMjBzaW1wbGUh" input_placeholder="Email address" btn_text="Subscribe" tds_newsletter2-image="8" tds_newsletter2-image_bg_color="#c3ecff" tds_newsletter3-input_bar_display="row" tds_newsletter4-image="9" tds_newsletter4-image_bg_color="#fffbcf" tds_newsletter4-btn_bg_color="#f3b700" tds_newsletter4-check_accent="#f3b700" tds_newsletter5-tdicon="tdc-font-fa tdc-font-fa-envelope-o" tds_newsletter5-btn_bg_color="#000000" tds_newsletter5-btn_bg_color_hover="#4db2ec" tds_newsletter5-check_accent="#000000" tds_newsletter6-input_bar_display="row" tds_newsletter6-btn_bg_color="#da1414" tds_newsletter6-check_accent="#da1414" tds_newsletter7-image="10" tds_newsletter7-btn_bg_color="#1c69ad" tds_newsletter7-check_accent="#1c69ad" tds_newsletter7-f_title_font_size="20" tds_newsletter7-f_title_font_line_height="28px" tds_newsletter8-input_bar_display="row" tds_newsletter8-btn_bg_color="#00649e" tds_newsletter8-btn_bg_color_hover="#21709e" tds_newsletter8-check_accent="#00649e" embedded_form_code="JTNDIS0tJTIwQmVnaW4lMjBNYWlsQ2hpbXAlMjBTaWdudXAlMjBGb3JtJTIwLS0lM0UlMEElMEElM0Nmb3JtJTIwYWN0aW9uJTNEJTIyaHR0cHMlM0ElMkYlMkZ0YWdkaXYudXMxNi5saXN0LW1hbmFnZS5jb20lMkZzdWJzY3JpYmUlMkZwb3N0JTNGdSUzRDZlYmQzMWU5NGNjYzVhZGRkYmZhZGFhNTUlMjZhbXAlM0JpZCUzRGVkODQwMzZmNGMlMjIlMjBtZXRob2QlM0QlMjJwb3N0JTIyJTIwaWQlM0QlMjJtYy1lbWJlZGRlZC1zdWJzY3JpYmUtZm9ybSUyMiUyMG5hbWUlM0QlMjJtYy1lbWJlZGRlZC1zdWJzY3JpYmUtZm9ybSUyMiUyMGNsYXNzJTNEJTIydmFsaWRhdGUlMjIlMjB0YXJnZXQlM0QlMjJfYmxhbmslMjIlMjBub3ZhbGlkYXRlJTNFJTNDJTJGZm9ybSUzRSUwQSUwQSUzQyEtLUVuZCUyMG1jX2VtYmVkX3NpZ251cC0tJTNF" tds_newsletter="tds_newsletter1" tds_newsletter1-input_bar_display="" tds_newsletter1-input_border_size="0" tds_newsletter1-title_color="#172842" tds_newsletter1-description_color="#90a0af" tds_newsletter1-disclaimer_color="#90a0af" tds_newsletter1-disclaimer2_color="#90a0af" tds_newsletter1-input_text_color="#90a0af" tds_newsletter1-input_placeholder_color="#bcccd6" tds_newsletter1-input_bg_color="#ffffff" tds_newsletter1-input_border_color="rgba(255,255,255,0)" tds_newsletter1-input_border_color_active="rgba(255,255,255,0)" tds_newsletter1-f_title_font_family="394" tds_newsletter1-f_title_font_size="eyJhbGwiOiI0MiIsImxhbmRzY2FwZSI6IjM2IiwicG9ydHJhaXQiOiIzMCIsInBob25lIjoiMzAifQ==" tds_newsletter1-f_title_font_line_height="1.2" tds_newsletter1-f_title_font_spacing="-1" tds_newsletter1-f_descr_font_family="638" tds_newsletter1-f_descr_font_size="eyJhbGwiOiIxOCIsImxhbmRzY2FwZSI6IjE1IiwicG9ydHJhaXQiOiIxNCIsInBob25lIjoiMTQifQ==" tds_newsletter1-f_descr_font_line_height="1.6" tds_newsletter1-f_descr_font_weight="700" content_align_horizontal="content-horiz-center" tdc_css="eyJhbGwiOnsibWFyZ2luLXJpZ2h0IjoiYXV0byIsIm1hcmdpbi1ib3R0b20iOiIxMDAiLCJtYXJnaW4tbGVmdCI6ImF1dG8iLCJwYWRkaW5nLXRvcCI6IjkwIiwid2lkdGgiOiI0MCUiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0Ijp7Im1hcmdpbi1ib3R0b20iOiI3MCIsInBhZGRpbmctdG9wIjoiNjAiLCJ3aWR0aCI6IjcwJSIsImRpc3BsYXkiOiIifSwicG9ydHJhaXRfbWF4X3dpZHRoIjoxMDE4LCJwb3J0cmFpdF9taW5fd2lkdGgiOjc2OCwicGhvbmUiOnsibWFyZ2luLWJvdHRvbSI6IjcwIiwicGFkZGluZy10b3AiOiI2MCIsIndpZHRoIjoiMTAwJSIsImRpc3BsYXkiOiIifSwicGhvbmVfbWF4X3dpZHRoIjo3NjcsImxhbmRzY2FwZSI6eyJtYXJnaW4tYm90dG9tIjoiOTAiLCJwYWRkaW5nLXRvcCI6IjgwIiwid2lkdGgiOiI2NSUiLCJkaXNwbGF5IjoiIn0sImxhbmRzY2FwZV9tYXhfd2lkdGgiOjExNDAsImxhbmRzY2FwZV9taW5fd2lkdGgiOjEwMTl9" tds_newsletter1-f_disclaimer_font_family="394" tds_newsletter1-f_disclaimer2_font_family="394" tds_newsletter1-f_input_font_family="394" tds_newsletter1-f_input_font_line_height="3" tds_newsletter1-f_input_font_size="eyJhbGwiOiIxNiIsInBvcnRyYWl0IjoiMTQiLCJwaG9uZSI6IjE0In0=" tds_newsletter1-f_btn_font_family="394" tds_newsletter1-f_btn_font_transform="uppercase" tds_newsletter1-f_btn_font_weight="700" tds_newsletter1-btn_bg_color="#e2687e" tds_newsletter1-btn_bg_color_hover="#172842" tds_newsletter1-f_input_font_weight="" tds_newsletter1-f_title_font_weight="800"]